The correct option is B −√5
Given f(x)=x−2√x2+1
∴ f′(x)=(√x1+1(1)−(x−2)(2x)2√x2+1)1x2+1=1+2x(1+x2)32
∴ f(x) is an increasing function for xϵ(−12,∞) & decreasing function for xϵ(−∞,−12)
∴ at x=−12, f(x) attains absolute minimum value
∴ f(−12)=−12−2√54=−√5
Ans: C