The correct option is A e
INr=π/2∫0xI⋅cosx esinxII dx+π/2∫0esinx dx
=[xesinx]π/20−π/2∫0esinx dx+π/2∫0esinx dx
⇒INr=eπ2 ⋯(1)
Again,
IDr=π/2∫0xI⋅sinx ecosxII dx−π/2∫0ecosx dx
=[−xecosx]π/20+π/2∫0ecosx dx−π/2∫0ecosx dx
⇒IDr=−π2 ⋯(2)
From (1) and (2),
∣∣∣INrIDr∣∣∣=eπ⋅22π=e