Let θ=π16⇒8θ=π2
tanπ16+tan5π16+tan9π16+tan13π16=tanθ+tan5θ+tan9θ+tan13θ=tanθ+tan5θ+tan(8θ+θ)+tan(8θ+5θ)=tanθ+tan5θ+tan(π2+θ)+tan(π2+5θ)=tanθ+tan5θ−cotθ−cot5θ=tanθ−cotθ+tan5θ−cot5θ(∵cotθ−tanθ=2cot2θ)=−2cot2θ−2cot10θ=−2[cot2θ+cot(8θ+2θ)]=−2[cot2θ+cot(π2+2θ)]=−2[cot2θ−tan2θ]=−4cot4θ=−4cotπ4=−4
Therefore, the absolute value of the expression is 4.