The correct option is B x−1−1=y−1=z−12
L1:x−11=y−1=z−13 and L2:x−1−3=y−1=z−11
D.R′s of L1=(1,−1,3)
D.R′s of L2=(−3,−1,1)
⇒D.C′s of L1=(1√11,−1√11,3√11)
and D.C′s of L2=(−3√11,−1√11,1√11)
since l1l2+m1m2+n1n2>0
So, Acute angle bisector is : x−x1l1+l2=y−y1m1+m2=z−z1n1+n2⇒x−1−2/√11=y−2/√11=z−14/√11⇒x−1−1=y−1=z−12