1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The adjacent sides of a ∥gm ABCD measure 34 cm and 20 cm and the diagonal AC is 42 cm long. Find the area of the ∥gm.

Open in App
Solution

The diagonal of a parallelogram divides it into two congruent triangles. Also, the area of the parallelogram is the sum of the areas of the triangles. We will now use Hero's formula to calculate the area of triangle ABC. $\mathrm{Semiperimeter},s=\frac{1}{2}\left(34+20+42\right)=\frac{1}{2}\left(96\right)=48\mathrm{cm}$ $\mathrm{Area}of∆ABC=\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}\phantom{\rule{0ex}{0ex}}=\sqrt{48\left(48-42\right)\left(48-34\right)\left(48-20\right)}\phantom{\rule{0ex}{0ex}}=\sqrt{48×6×14×28}\phantom{\rule{0ex}{0ex}}=\sqrt{112896}\phantom{\rule{0ex}{0ex}}=336{\mathrm{cm}}^{2}$ Area of the parallelogram$=2×\mathrm{Area}∆\mathrm{ABC}=2×336=672{\mathrm{cm}}^{2}$

Suggest Corrections
1
Join BYJU'S Learning Program
Related Videos
Areas of Similar Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program