The altitude drawn to the base of a isosceles triangle is of length 8 cm and the perimeter is 32 cm. The area of the triangle is ___________.
Let ABC be the isosceles triangle, the AD be the altitude
Let AB=AC=x, then BC=32−2x [because parameter =2 (side) + Base]
Since in an issoceles triangle the altitude bisects the base, so
BD=DC=16−x
In a triangle ADC, we get
AC2=AD2+CD2
⇒x2=82+(16−x)2
⇒x=10 cm
BC=32−2x=32−20=12 cm
Hence, required area =12AD×BC=12×8×12=48 cm 2