The amplitude of 1+i√3√3+i is
π3
−π3
π6
−π6
Let z=1+i√3√3+i⇒ z=1+i√3√3+i×√3−i√3−i⇒ z=√3+2i−√3i23−i2⇒ z=√3+√3+2i4⇒ z=2√3+2i4⇒ z=√32+12itan α=∣∣Im(z)Re(z)∣∣=1√3⇒ α=π6
Since, z lies in the first quadrant.
Therefore, arg (z) =tan−1(1√3)=π6
Angle between asymptotes of the hyperbola 3x2−y2=3 is
If 0≤x≤π2 and 81sin2x+81cos2x=30 then x is equal to