Let the angle A, B, C and D of a quadrilateral be x, 2x, 4x and 5x, respectively.
We have,
Sum of all the angles of a quadrilateral = 360°
⇒ x + 2x + 4x + 5x = 360°
⇒ 12x = 360°
⇒ x = 30°
Thus, ∠A = 30°
∠B = 60°
∠C = 120°
∠D = 150°
Now, the bisectors of ∠C and ∠D meet of O
Thus, in ∆COD,
∠DCO + ∠COD + ∠ODC = 180°
⇒ × 120° + ∠COD + × 150° = 180°
⇒ 60° + ∠COD + 75° = 180°
⇒ 135° + ∠COD = 180°
⇒ ∠COD = 180° − 135°
⇒ ∠COD = 45°
Hence, ∠COD = 45°.