The angle between a pair of tangents drawn from a point P to the circle x2+y2+4x−6y+9sin2α+13cos2α=0 is 2α. The equation of the locus of the point P is
A
x2+y2+4x+6y+9=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x2+y2−4x+6y+9=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x2+y2–4x–6y+9=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x2+y2+4x−6y+9=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dx2+y2+4x−6y+9=0 x2+y2+4x−6y+9sin2α+13cos2α=0⇒(x+2)2+(y−3)2=9−9sin2α+4−13cos2α⇒(x+2)2+(y−3)2=9cos2α−13cos2α+4⇒(x+2)2+(y−3)2=4−4cos2α⇒(x+2)2+(y−3)2=4sin2α∴Centre of the circle C(−2,3),and radius r=2sinα
According to the image sinα=ACPCPC2sin2α=4sin2α (h+2)2+(k−3)2=4 ∴locus of P is x2+y2+4x−6y+9=0