The correct option is C tan−1(√32)
Making the curve x2−y2=4 homogeneous with help of straight line √3x+y=2 we get
y2−x2=4(√3x+y2)2
⇒4x2+2√3xy=0
If θ is the angle between these lines ,then
θ=tan−1∣∣∣2√h2−aba+b∣∣∣
Here, a=4,b=0,h=√3
⇒θ=tan−1∣∣∣2√3−04+0∣∣∣
θ=tan−1(√32)