The angle between the altitudes of a parallelogram through the same vertex of an obtuse angle of the parallelogram is 60∘.
Find the angles of the parallelogram.
In parallelogram ABCD,
∠isanobtusedangleAE⊥BCandAF⊥DC∠EAF=60∘
In quadrilateral AECF,
∠EAF+∠F+∠D+∠E=360∘
(Sum of angles of a quadrilateral)
⇒60∘+90∘+∠C+90∘=360∘⇒240∘+∠C=360∘⇒∠C=360∘−240∘=120∘∴∠C=120∘
But ∠A=∠C (Opposite angles)
∴∠A=120∘
But ∠A+∠B=180∘
(Sum of adjacent angles)
⇒120∘+∠B=180∘∠B=180∘−120∘=60∘ ∴∠B=60∘
But ∠D=∠B (Opposite angles)
∴∠D=60∘
Hence ∠A=120∘,∠B=60∘,∠C=120∘ and ∠D=60∘