The correct option is C cos−17√465
Let A=(1,2,3),B=(−1,−2,−1),C=(2,3,2),D=(4,7,6)
Direction ratios of diagonal AC is (1−2,2−3,3−2)=(−1,−1,1)=(a1,b1,c1)
Direction ratios of diagonal BD is (−1−4,−2−7,−1−6)=(−5,−9,−7)=(a2,b2,c2)
Angle between DR's of (a1,b1,c1) and (a2,b2,c2) is given by:
cosθ=a1a2+b1b2+c1c2√a21+b21+c21√a22+b22+c22
cosθ=(−1)(−5)+(−1)(−9)+(1)(−7)√12+12+12√52+92+72
cosθ=7√465
θ=cos−17√465