The correct option is D [pqp+q]=3
Given :
Line: x+12=y3=z−36,
D.r′s of line (a1,b1,c1)=(2,3,6)
Plane: 10x+ 2y−11z=3
D.r′s of normal to the plane (a2,b2,c2)=(10,2,−11)
If the angle between the line and plane is θ
⇒sinθ=a1a2+b1b2+c1c2√a21+b21+c21√a22+b22+c22
cos(90−θ)=
2×10+3×2+6×(−11)√(22+32+62)(102+22+112)=−821
∴θ=90∘−cos−1(−821)
or θ=π2−(π−cos−1(821))=cos−1(821)−π2∵cos−1(−x)=π−cos−1x
⇒p=8,q=7