The angle between the line r=i+2j+3k+λ2i+3j+4kand the plane r . i+2j-2k=0 is
0°
60°
30°
90°
45°
Find the angle between the line and plane.
Consider the given equation as,
r=i+2j+3k+λ2i+3j+4k
i+2j-2k=0
We know that the general form of vector equation
⇒r→=a→+λb→⇒r→.n→=d→⇒sinθ=b→.n→b→n→
Let,
b→=2i→+3j→+4k→n→=i→+2j→-2k→
Then,
b→.n→=2i→+3j→+4k→i→+2j→-2k→b→.n→=2×1+3×2+4×-2b→.n→=2+6-8b→.n→=0
Therefore,
sinθ=0b→n→sinθ=0θ=sin-10θ=0°
Hence, the correct answer is Option A.