The correct option is B 90∘
The given lines are 2x=3y=−z and 6x=−y=−4z
or L1:x3=y2=z−6 and L2:x2=y−12=z−3
⇒D.R′s of line L1:(a1,b1,c1)=(3,2,−6)
D.R′s of line L2:(a2,b2,c2)=(2,−12,−3)
Now (3)(2)+(2)(−12)+(−6)(−3)=0
we know, angle between two lines cosθ=a1a2+b1b2+c1c2√a21+b21+c21√a22+b22+c22
∵a1a2+b1b2+c1c2=(3)(2)+(2)(−12)+(−6)(−3) =0
⇒θ=90∘