The correct option is
C π3Given that the equations
l+m+n=0 ………..(1)
l+m=−n
⇒−(l+m)=n
and
l2+m2+n2=0 ……….(2)
Put the value of n in equation (2)
l2+m2+n2=0
⇒l2+m2−(−(l+m))2=0
⇒l2+m2−(l2+m2−2ml)=0
⇒l2+m2−l2−m2+2ml=0
⇒2ml0
⇒ml=0
⇒m=0,l=0
Let us put m=0 in equation (3)
l+o+n=0
l=−n
Hence, direction rates(l,m,o)=(1,0,−1)
Let us put l=0, we get m=−n
Here, direction ratios (l,m,n)=(0,1,−1)
we know that,
cosθ=→b1⋅→b2|→b1||→b2|
=(1,0,−1)⋅(0,1,−1)√12+02+(−1)2√02+12+(−1)2
=1√2√2
cosθ=12
cosθ=cosπ3
θ=π3
Hence, this is the answer.