The correct option is A π3
As, l+m+n=0
⇒(m+n)2=l2
⇒m2+n2+2mn=(m2+n2) (∵l2=m2+n2)
⇒mn=0
Now, l2+m2+n2=1
⇒l2+l2=1 (∵l2=m2+n2)
⇒l=±1√2
case-1:
if l=−(m+n)=1√2
⇒m+n=−1√2
∴m−n=1√2 (∵mn=0)
Thus, m=0, n=−1√2
Direction cosines are (1√2,0,−1√2)...(1)
case-2:
if l=−(m+n)=−1√2
⇒m+n=1√2
∴m−n=1√2 (∵mn=0)
Thus, m=1√2, n=0
Direction cosines are (−1√2,1√2,0)...(2)
From equation (1) and (2)
⇒∣∣∣−12+0+0∣∣∣=√12+0+12√12+12+0⋅cosθ
⇒cosθ=12
Since, angle is acute so,
θ=π3