The angle between the lines whose direction cosines satisfy the equations l+m+n=0 and l2+m2+n2 is
According to question.................
⇒l+m+n=0−−−−(i)l=−(m+n)⇒l2=m2+n2−−−(ii)⇒(−(m+n))2=m2+n2⇒(m+n)2=m2+n2⇒m2+n2+2mn=m2+n2⇒2mn=0∴mn=0therearetwocase:m=0,n=0case1:(m=0)l=−n|usingequ:l+m+n=0−−−−(i)suppose:l=k,m=o,n=−k⇒l2+m2+n2=1⇒k2+0+k2=1⇒k=1√2Apply,⇒l=1√2,m=o,n=−1√2(weAsume:l1=1√2,m1=o,n1=−1√2case2:(n=0)l=−m|usingequ:l+m+n=0−−−−(i)suppose:⇒l=k,m=−k,n=0(then,l2+m2+n2=1k2+k2+0=1k=1√2apply,⇒l=1√2,m=−1√2,n=0(weAssume:l2=1√2,m2=−1√2,n2=0Anglebetween2lines=θcosθ=(l1+m1+n1).(l2+m2+n2)√(l12+m12+n12).(l22+m22+n22)=l1l2+m1m2+n1n2√(l12+m12+n12)(l22+m22+n22)=1√2.1√2+0.−1√2+−1√2.0√(12+12+0)(12+12 +0)=12√1cosθ=12,∴θ=π3
So,that the correct option is B.