wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The angle between the pair of lines (x2+y2)sin2α=(xcosθ-ysinθ)2 is


A

θ

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

2θ

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

α

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

2α

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

2α


Explanation for correct option:

Finding the angle between the pair of lines:

Given, the equation of pair of lines

(x2+y2)sin2α=(xcosθ-ysinθ)2

Expanding the above equation, we get

x2sin2α+y2sin2α=x2cos2θ-2xysinθcosθ+y2sin2θx2sin2α-x2cos2θ+y2sin2α-y2sin2θ+2xysinθcosθ=0sin2α-cos2θx2+sin2α-sin2θy2+2xysinθcosθ=0(i)

The above equation is of the format ax2+by2+2hxy=0ii ,.

Comparing the equations iandii, we get the values of

a=sin2α-cos2θ

b=sin2α-sin2θ

h=sinθcosθ

Finding the angle between the pair of two lines using the formula tanϕ=2h2-aba+b.

Therefore,

tanϕ=2h2-aba+b=2(sinθcosθ)2-sin2α-cos2θsin2α-sin2θsin2α-cos2θ+sin2α-sin2θ=2sin2θcos2θ-sin2αsin2α+cos2θsin2α+sin2αsin2θ-cos2θsin2θsin2α-cos2θ+sin2α-sin2θ=2-sin4α+sin2αcos2θ+sin2θ2sin2α-cos2θ+sin2θ=2-sin4α+sin2α×12sin2α-(1)cos2θ+sin2θ=1=2sin2α1-sin2αcos2α2sin2α-1=cos2α=2sin2αcos2αcos2α1-sin2α=cos2α=2sinαcosαcos2α=sin2αcos2α[2sinαcosα=sin2α]=|tan2α|

tanϕ=tan2αϕ=2α

Therefore, the angle between the pair of lines is 2α

Hence, option (D) is the correct answer.


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ellipse and Terminologies
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon