The correct option is C tan−1(12√5)
Here, S=3x2+2y2−5=0
S1=3(1)2+2(2)2−5=3+8−5=6
[∵ Point (1,2)]
T=3x⋅x1+2y⋅y1−5
=3x(1)+2y(2)−5
=3x+4y−5
Now, use, SS1=T2
(3x2+2y2−5)⋅6=(3x+4y−5)2
18x2+12y2−30=9x2+16y2+24xy+25−30x−40y
⇒9x2−4y2−24xy+30x+40y−55=0
Here, a=9,b=−4 and h=−12
∴tanθ=2√h2−aba+b=2√144+369−4=2√1805
=6√205=12√5.