The correct option is A cos−11621
Let 2x2−6y2−12z2+18yz+2zx+xy=(a1x+b1y+c1z)(a2x+b2y+c2z)=0.
Here a1a2=2,b1b2=−6,c1c2=12and a1b2+a2b1=1,a1c2+a2c1=2,b1c2+b2c1=18
On solving, the planes represented by 2x2−6y2−12z2+18yz+2zx+xy=0 are
2x−3y+6z=0⋯(i)
x+2y−2z=0⋯(ii)
If θ is the angle between the planes (i) and (ii) then,
cosθ=|(2)(1)+(−3)(2)+(6)(−2)|√22+(−3)2+62√12+22+(−2)2=1621
∴θ=cos−11621