Let, the angles of the triangle are,
(a−d)o,ao and (a+d)o.
Then, a−d+a+a+d=180o⇒a=60o
So, the angles are (60−d)o,60o,(60+d)o.
Here, (60−d)o is the least angle and (60+d)o is the greatest angle.
Now, greater angle=(60+d)o={(60+d)π180}c
Also, numberofdegreesintheleastanglenumberofradiansinthegreatestangle=60π⇒60−d{(60+d)π180}c=60π⇒180(60−d)π(60+d)=60π⇒4d=120⇒d=30
Hence, the angles are (60−30)o,60o,(60+30)o i.e., 30o,600,90o.