Let AN be the surface of the lake and O be the point of observation such that OA=h m.
Let P be the position of the cloud and P′ be its reflection in the lake.
Then,
PN=P′N
Let,
OM⊥PN
Also,
∠POM=α and ∠P′OM=β
Let,
PM=x
Then,
PN=PM+MN=PM+OA=x+h
In ΔPOM, we have
tanα=PMOM=xAN
⇒AN=xcotα …… (1)
In ΔOMP′, we have
tanβ=P′MOM=x+2hAN
⇒AN=(x+2h)cotβ …… (2)
From equations (1) and (2), we have
xcotα=(x+2h)cotβ
x(cotα−cotβ)=2hcotβ
x(1tanα−1tanβ)=2htanβ
x(tanβ−tanαtanαtanβ)=2htanβ
x=2htanβ−tanα
Therefore, height of the cloud is,
PN=x+h
PN=2htanαtanβ−tanα+h
PN=2htanα+h(tanβ−tanα)tanβ−tanα
PN=h(tanα+tanβ)tanβ−tanα
Hence, proved.