Let AN be the surface of the lake and O be the point of observation such that OA = h metres.
Let P be the position of the cloud and P’ be its reflection in the lake
Then PN = P’N
Let OM ⊥ PN
Also, ∠POM=α and ∠POM=β
Let PM = x
Then PN = PM + MN = PM + OA = x + h
In rt. ΔOPM, we have
tanα=PMOM=xAN ⇒AN=x cot α ⋯(1)
In rt.ΔOPM′, we have,
tan β=P′MOM=x+2hAN [∵ P′M=P′N+MN=(x+h)+h=x+2h]
tan β=x+2hAN
⇒ AN=(x+2h)cot β ⋯(2)
Equating (1) and (2):
x cot α=(x+2h)cot β
⇒x(cot α−cot β)=2h cot β
⇒x(1tan α−1tan β)=2htan β
⇒x(tan β−tanα)tan α.tanβ=2htan β
⇒x=2h tanαtan β−tan α
Hence, height of the cloud is given by PN = x + h
=2h tan αtan β−tan α
=2h tanα+h(tan β−tanα)tanβ−tanα
=h(tan α+tan β)tan β−tan α
Hence proved.