The angle of elevation of a stationery cloud from a point 2500 m above a lake is 15∘ and the angle of depression of its reflection in the lake is 45∘. What is the height of the cloud above the lake level? (Usetan15∘=0.268).
Open in App
Solution
Let A be the point of observation and B be the position of the cloud and PQ be the surface of lake. Then C is the reflection of cloud and AP=2500m
Let BD=x
Then DQ=AP=2500m and QC=BQ=BD+DQ=2500+x
Also DC=DQ+QC=2500+x
Also DC=DQ+QC=2500+2500+x=5000+x
⇒ In △ADC,tan45o=DCAD
⇒1=5000+xAD
⇒AD=5000+x ------ ( 1 )
⇒ In △ABD,tan15o=BDAD
⇒0.268=x5000+x
⇒0.268(5000+x)=x
⇒1340+0.268x=x
⇒0.732x=1340
∴x=1830.60
⇒BQ=BD+DQ=x+2500
⇒BQ=1830.60+2500
∴BQ=4330.6
∴ The height of the cloud above the lake level is 4330.6m