Let CD is a hill. An angle of elevation at point A and B are ϕ,θ and α respectively.
AB=K m
∠BAM=ϕ
∠DAC=θ and ∠DBN=α
Let CD=h m
From right angled ΔAMB
cosϕ=AMAB
AM=ABcosϕ=Kcosϕ …(i)
and sinϕ=BMAB
BM=ABsinϕ=Ksinϕ …(ii)
From right angled ΔACD,
cosθ=ACDC
AC=DCcotθ=hcotθ …(iii)
∵MC=AC–AM
From eq. (i) and (iii),
MC=hcotθ–Kcosϕ
∵MC=BN
So, BN=hcotθ–Kcosϕ …..(iv)
From right angled ΔBND,
tanα=DNBN
DN=BNtanα
MCtanα
=(hcotθ–Kcosϕ)tanα
h=DN+NC
h=hcotθtanα–Kcosϕtanα+Ksinϕ
h[1–cotθtanα]=K[sinϕ–cosϕtanα]
h[1−cotθcotα]=K[sinϕ−cosϕ.1cotα]
h[cotα−cotθcotα]=K[sinϕcotα−cosϕcotα]
h=K(sinϕcotα−cosϕ)cotα−cotθ
h=K(cosϕ−sinϕcotα)cotθ−cotα