The angle of elevation of the top of a tree from a point A on the ground is 60∘ . On walking 20 m away from point A, to a point B, the angle of elevation changes to 30∘. Find the height of the tree.
10√3 m
In triangle ACD,
tan60∘=DCCA
⇒√3=hx ..................... (1)
In triangle CDB,
tan30∘=CDCB
⇒1√3=hx+20....................... (2)
Using (1) and (2), we get
⇒1√3=x√3x+20
⇒x+20=3x
⇒2x=20
⇒x=10
∴h=x√3=10√3
Thus, the height of the tree is 10√3 m.