The angle of elevation of the top of a vertical tower from a point on the ground is 60∘. From another point 10 m vertically above the first, its angle of elevation is 30∘ . Find the height of the tower.
Let the height of the tower be h cm.
Now, In △PAB
tan60o=APAB⇒√3=hAB⇒AB=h√3−−−−(1)
And, In △PCD
tan30o=PDCD⇒1√3=h−10CD⇒CD=√3(h−10)−−−−(2)
Since, AB = CD, So, equation (2) becomes,
AB=√3(h−10)−−−−(3)
Equating equation (1) and (3), we get,
h√3=√3(h−10)h=3(h−10)2h=30=h=15 m
Hence, the height of the tower will be 15 m