The angle of elevation of the top point P of the vertical tower PQ of height h from a point A on the ground is 45∘ and from a point B, the angle of elevation is 60∘, where B is a point at a distance d from the point A, measured along the line AB, which makes an angle 30∘ with AQ. prove that d = h(√3−1)
In ΔPAQ, we have
AQPQ=cot 45∘=1⇒AQh=1⇒AQ=h
From right ΔAQP, we have
AP2=AQ2+PQ2=(h2+h2)=2h2⇒AP=√2h.
InΔPBH,∠BPH=180∘−(60∘+90∘)=30∘
InΔPAQ,∠APQ=180∘−(40∘+90∘)=45∘
∴∠APB=(∠APQ−∠BPH)=(45∘−30∘)=15∘
In ΔAPB, we have
∠PAB=15∘,∠APB=15∘ and ∠ABP=180∘−(15∘+15∘)=150∘
Using sine formula on ΔABP, we have
ABsin15∘=APsin15∘
⇒dsin15∘=√2hsin30∘
⇒ d=2√2h.sin15∘⇒ d=2√2h.(√3−1)2√2=(√3−1)h.Hence,d=(√3−1)h.⎡⎢ ⎢ ⎢⎣∵ sin 15∘=(sin 45∘−30∘)=sin 45∘ cos30∘−cos45∘ sin30∘=1√2×√32−1√2×12=(√3−1)2√2⎤⎥ ⎥ ⎥⎦