The correct option is A tan−12
∵1≤|sinx|+|cosx|≤√2∴y=[|sinx|+|cosx|]=1∵−√2≤sinx+cosx≤√2|sinx|+|cosx|=√{|sinx|+|cosx|}2=√(1+|sin 2x|)≤1
Let P and Q be the points of intersection of given curves.
Now, solving y = 1 and x2+y2=5
∴x2+1=5⇒x=±2
∴P≡(−2,1) and Q≡(2,1)
Clearly the slope of line y = 1 is zero
∵x2+y2=5∴2x+2ydydx=0⇒dydx=−xy(dydx)(−2,1)=2 and (dydx)(2,1)=−2
Thus, the angle of intersection is tan−1(2) and tan−1(−2)