The correct option is B π2
x2−y2=8
⇒dydx=xy
⇒−1dy/dx=yx
At the point (−5√2,3√2),
−1dy/dx=−3/√2−5/√2=35
Also, 9x2+25y2=225
or 18x+50ydydx=0
or dydx=−9x25y or −dxdy=25y9x
At the point (−5√2,3√2),
−dxdy=25×3/√29(−5/√2)=−159=−53
Since, the product of the slopes is −1, the normals cut orthogonally, i.e., the required angle is equal to π2.