Forming an equation by using the properties of cyclic quadrilateral.
Given, ABCD is a cyclic Quadrilateral.
Since, the sum of opposite angle of a cyclic quadrilateral measures 180∘.
Therefore,
∠A+∠C=180∘ and ∠B+∠D=180∘
⇒(6x+10)+(x+y)=180∘
7x+y=180∘−10∘
⇒7x+y=170∘ ......(1)
and
5x+(3y−10)=180∘
5x+3y=180∘+10
5x+3y=190∘ .....(2)
Finding the values of angles of quadrilateral.
From equation(1), we get
y=170∘−7x .....(3)
Substituting the value from (3) to (2)
5x+3(170∘−7x)=190∘
⇒5x+510∘−21x=190∘
⇒−16x=190∘−510∘
⇒−16x=−320∘
⇒x=−320−16
⇒x=20∘
Substituting the value of x in equation (3) we get,
y=170∘−7(20∘)
y=170∘−140∘
y=30∘
Therefore, values of x and y are 20∘ are 30∘ respectively.
Now,
∠A=6(20∘)+10∘=120∘+10∘=130∘
∠B=5(20∘)=100∘
∠C=20∘+30∘=50∘
∠D=3(30∘)−10∘=(90−10∘)=80∘
Hence the values of x and y are 20∘ and 30∘ respectively and the values of the four angles are 130∘,100∘,50∘ and 80∘.