The angles of a heptagon are (x-5)°,(x+3)°,(5x-6)°,(2x+5)°,(x+8)°,(2x+9)°and(3x+1)°. The value ofx is
59
58
60
61
As we know that the sum of measures of interior angles of a polygon having n sides is=(n−2)×180degrees
So for heptagon=(7-2)×180°=900°
Now
(x+3)°+(2x+5)°+(x+8)°+(3x+1)°+(5x-6)°+(2x+9)°+(x-5)°=900°15x+15=900°x=88515=59°
Hence, x=59°.
Solve :
(i) 13x−6=52(ii) 2x3−3x8=712(iii) (x+2)(x+3)+(x−3)(x−2)−2x(x+1)=0(iv) 110−7x=35(v) 13(x−4)−3(x−9)−4(x+4)=0(vi) x+7−8x3=17x6−5x8(vii) 3x−24−2x+33=23−x(viii) x+26−(11−x3−14)=3x−412(ix) 25x−53x=115(x) x+23−x+15=x−34−1(xi) 3x−23+2x+32=x+76(xii) x−x−12=1−x−23(xiii) 9x+72−(x−x−27)=36(xiv) 6x+12+1=7x−33
Solve the equations:
(i) 5x = 3x + 24;
(ii) 8t + 5 = 2t − 31;
(iii) 7x − 10 = 4x + 11;
(iv) 4z + 3 = 6 + 2z;
(v) 2x − 1 = 14 − x;
(vi) 6x + 1 = 3(x − 1) + 7;
(vii) ;
(viii) ;
(ix) 3(x + 1) = 12 + 4 (x − 1);
(x) 2x − 5 = 3(x − 5);
(xi) 6(1 − 4x) + 7(2 + 5x) = 53;
(xii) 3(x + 6) + 2 (x + 3) = 64;
(xiii) ;
(xiv) .