The angles of a quadrilateral are 3x°, (x + 30)°, (x - 30)° and (2x + 10)°. The value of the smallest angle is
By angle sum property, the sum of interior angles of a quadrilateral is 360°.
If ABCD is a quadrilateral, then
⇒∠A+∠B+∠C+∠D=360°⇒3x°+(x+30)°+(x−30)°+(2x+10)°=360°⇒3x°+x°+x°+2x°+(30−30+10)°=360°⇒7x°=360°−10°=350°⇒x°=50°
So, the angles of the quadrilateral are,
3x°=3(50°)=150°,(x+30)°=(50°+30°)=80°,(x−30)°=(50−30)°=20°,(2x+10)°=(2×50+10)°=(100+10)°=110°.
Hence, the smallest angle of the quadrilateral is 20°.