The correct option is B tan−1(√3);tan−1(1√3);cot−1(0)
Let ABC be a triangle in which the given vectors are represented by the sides AB and AC.
i.e.,AB=√3(a×b)
and AC=b−(a.b)a
∴AB.AC=√3(a×b)[b−(a.b)a]
=√3[(a×b).b(a.b)(a×b).a]=√3[0−0]=0.
Therefore, ∠BAC=900
AB2=[√3(a×b)]2=3(a×b)2
AC2=[b−(a.b)a]2 ...(i)
=(b)2+(a.b)2a2−2(b.a)(a.b)
=(b)2+(a.b)2−2(a.b)2
=(b)2−(a.b)2=(b)2=|a|2|b|2cos2θ
=(b)2[1−|a|2cos2θ]=(b)2(1−cos2θ)
=(b)2sin2θ=|a|2|b|2sin2θ=(a×b)2 ...(ii)
Dividing (i) by (ii), we get
AB2AC2=3(a×b)2(a×b)2
⇒AB2=3.AC2⇒AB=√3AC.
tanC=ABAC=√3ACAC=√3,∴∠C=600
So ∴∠A=180−900−600=300.
Hence, angles of the triangle are 300,900 and 600