Let A=∫1(a2+b2)−(a2+b2)cosxdx
Substituting t=cosx⇒dt=−sinxdx we get A=−1(a2+b2)∫1(t−1)√1−t2dt
Again substituting t=sinu⇒dt=cosudu, we get A=−1(a2+b2)∫1sinu−1du
Now substituting s=tanu2⇒ds=12sec2u2du, we get
A=2(a2+b2)∫1(s−1)2=−2(a2+b2)(s−1)+c=−2(a2+b2)(tanu2−1)+c=−2(a2+b2)(t√1−t2+1−1)+c=−2(a2+b2)(cosx√1−cos2x+1−1)+c=−2(a2+b2)(cosx√1−cos2x+1−1)+c=−cotx2(a2+b2)
Let B=∫1a2sin2x+b2cos2xdx
Multiplying and dividing by sec2x we get B=∫sec2xa2tan2x+b2dx
Substituting t=tanx⇒dt=sec2xdx, we get
B=∫1a2t2+b2dt=1b2∫1a2t2b2+1dt=tan−1atbab+c=1abtan−1atanxb+c
Let C=∫1acosx+bsinxdx
Substituting t=tanx2⇒dt=12sec2x2dx, we get
C=2∫1−at2+a+2bt=2∫1b2a−(√at−b√a)2+adt
Again substituting u=√at−b√a⇒du=√adt, we get
C=2√a∫1b2a+a−u2du=2√a(b2a+a)∫11−au2a2+b2du=2√a2+b2log1+√au√a2+b21−√au√a2+b2+c=2√a2+b2log√a2+b2+at−b√a2+b2−at+b+c=2√a2+b2log√a2+b2+atanx2−b√a2+b2−atanx2+b+c
Let D=∫1a2−b2cos2xdx
Multiplying and dividing by sec2x, we get D=∫sec2xa2sec2x−b2dx
Now substituting t=tanx⇒dt=sec2xdx, we get
D=∫1a2(t2+1)−b2dt=1a2−b2∫1a2t2a2−b2−1dt=1a√a2−b2tan−1(at√a2−b2)+c=1a√a2−b2tan−1(atanx√a2−b2)+c