wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The antiderivative of

Open in App
Solution

Let A=1(a2+b2)(a2+b2)cosxdx
Substituting t=cosxdt=sinxdx we get A=1(a2+b2)1(t1)1t2dt
Again substituting t=sinudt=cosudu, we get A=1(a2+b2)1sinu1du
Now substituting s=tanu2ds=12sec2u2du, we get
A=2(a2+b2)1(s1)2=2(a2+b2)(s1)+c=2(a2+b2)(tanu21)+c=2(a2+b2)(t1t2+11)+c=2(a2+b2)(cosx1cos2x+11)+c=2(a2+b2)(cosx1cos2x+11)+c=cotx2(a2+b2)
Let B=1a2sin2x+b2cos2xdx
Multiplying and dividing by sec2x we get B=sec2xa2tan2x+b2dx
Substituting t=tanxdt=sec2xdx, we get
B=1a2t2+b2dt=1b21a2t2b2+1dt=tan1atbab+c=1abtan1atanxb+c
Let C=1acosx+bsinxdx
Substituting t=tanx2dt=12sec2x2dx, we get
C=21at2+a+2bt=21b2a(atba)2+adt
Again substituting u=atbadu=adt, we get
C=2a1b2a+au2du=2a(b2a+a)11au2a2+b2du=2a2+b2log1+aua2+b21aua2+b2+c=2a2+b2loga2+b2+atba2+b2at+b+c=2a2+b2loga2+b2+atanx2ba2+b2atanx2+b+c
Let D=1a2b2cos2xdx
Multiplying and dividing by sec2x, we get D=sec2xa2sec2xb2dx
Now substituting t=tanxdt=sec2xdx, we get
D=1a2(t2+1)b2dt=1a2b21a2t2a2b21dt=1aa2b2tan1(ata2b2)+c=1aa2b2tan1(atanxa2b2)+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon