The approximate value of ∫3−3x2dx using Trapezoidal rule and taking 6 equal intervals is?
∫3−3x2dx Trapizoidal Rule
⇒∫baf(x)dx =Δx2(f(x0)+2f(x1)+2f(x2)+........f(x6))
6 equal intervals
x1−2⟶−1x2−1⟶0x30⟶1x41⟶2x52⟶3⇒Δx=⌊b−an⌋=3−(−3)6=66=1x0=−3x1=−2x2=−1x3=0x4=1x5=2x6=3f(x)=x3⇒∫3−3x2dx=12⇒(9+8+2+0+2+8+9)=382=19⇒∫3−3x2dx=19