The arch of a bridge is in the shape of semi-ellipse having a horizontal span of 40ft and 16ft, high at the centre. How high is the arch, 9ft from the right or left of the centre?
Open in App
Solution
Take the mid-point of the base as the centre C(0,0).
Since the base is 40ft, the vertices A and A′ are (20,0) and (−20,0). Therefore 2a=40
⇒a=20,b=16 Equation of the ellipse is x2a2+y2b2=1 ∴x2400+y2256=1 Let y1 be the height of the arch from 9ft right of the centre.
∴(9,4) is a point on the semi-ellipse. The equation of ellipse is x2+y2a2+b2=1 ⇒92400+y21256=1 ⇒92400+y21256=1 ⇒y21256=1−81400=319400 ⇒y21=256×319400 ⇒y1=1620√319=45√319 =45√319ft ∴ the height of the arch 9 ft from the right of the centre is =45√319ft.