The area bounded by the curve 4y2=x2(4-x)(x-2) is equal to:
3π2
π16
π8
3π8
Explanation for the correct option:
Given, curve 4y2=x2(4-x)(x-2)
Taking square root;
∴|y|=|x|2(x-2)(4-x)⇒y1=x2(4-x)(x-2)andy2=-x2(4-x)(x-2)
∴Area(A)=∫24(y1-y2)dx=∫24(4-x)(x-2)dx...(1)
On applying∫abf(x)dx=∫abf(a+b-x)dx
Area=∫24(6-x)(4-x)(x-2)dx...(2)Adding,(1)and(2)⇒2A=6∫24(4-x)(x-2)dx⇒A=3∫241-(x-3)2dx⇒A=3×π2×12⇒A=3π2
Hence, the correct answer is option (A).