The correct option is
A 1a(a−12+e−a) Fig.(1)
Given:
curve y=f(x) passes through the point P(1,1) ;
Normal at the point P(1,1) is a(y−1)+(x−1)=0 ;
slope of tangent dydx∝y (ordinate of point )
⇒ dydx=ky where k is a proportionality constant.
⇒ dyy=k.dx
integrating both the sides
∫dyy=∫k.dx
⇒ ln(y)=kx+ln(c) where ′ln(c)′ is a integral constant
⇒ ln(yc)=kx
⇒ yc=ekx
⇒ y=c.ekx
curve y=c.ekx passes through point P(1,1)
⇒ 1=c.ek.1
⇒ 1=c.ek
⇒ c=e−k
on putting this value of ′c′ into the equation of curve
y=e−k.ekx
⇒ y=ek(x−1)
Slope of Normal at point P(1,1)
N(1,1) = −dxdy
⇒ N(1,1) = −1(dydx)
⇒ N(1,1) =−1ddx(ek(x−1))
⇒ N(1,1) =−1k.e(1−1)
⇒ N(1,1) =−1k.e(0)
⇒ N(1,1) = −1k ......(1)
equation of Normal at point P(1,1) is a(y−1)+(x−1)=0
slope of normal will be dydx of the equation of normal at point P(1,1)
a(y−1)+(x−1)=0
⇒ a(dydx−0)+(1−0)=0
⇒ dydx=−1a
So N(1,1) = −1a ......(2)
from equation (1) and (2)
⇒ −1k=−1a
⇒ a=k
Now equation of curve y=ea(x−1)
equation of normal a(y−1)+(x−1)=0
y=ea(x−1)
⇒ at x=0, y=e−a
⇒ at x=1, y=1
a(y−1)+(x−1)=0
⇒ at x=0, y=(1+1a)
⇒ at x=1, y=1
Area bounded by the curve y=f(x) , y−axis and the normal to the curve at point P(1,1)
Total area = shaded area(1) + shaded area(2); (shown in Fig. 1)
Now, shaded area(1) = area of triangle having coordinates (0,1), (1,1), (0,1+ 1a)
= 12×(base)×(height)
= 12×(1−0)×(1+1a−1)
= 12×(1)×(1a)
= 12a
so shaded area(1) =12a
∵ y=ea(x−1)
⇒ ln(y)=a(x−1)
⇒ x= 1aln(y)+1
Now,
shaded area(2) = ∫1e−axdy
= ∫1e−a ( 1aln(y)+1) dy
=1a∫1e−aln(y)dy + ∫1e−a1dy
= 1a×[y.ln(y)−y]1e−a + [y]1e−a
= 1a[−1+ae−a+e−a] + [1−e−a]
= (1−1a+e−aa)
so shaded area(2) = (1−1a+e−aa)
Total area = shaded area(1) + shaded area(2)
= (12a) + (1−1a+e−aa)
= (1−12a+e−aa)
= 1a(a−12+e−a)
Hence the correct answer is 1a(a−12+e−a) is correct.