The area bounded by the curve (y−sin−1 x)2=x−x2 is
π4
(y−sin−1 x)2=x−x2
y−sin−1 x=±√x−x2
y=sin−1 x±√x−x2
The given curves are y=sin−1 x+(√x−x2) and y=sin−1 x−(√x−x2)
Domain of the curve is (0,1)
sin−1x and √x−x2 are positive in (0,1)
∴y2=sin−1x+√x−x2≥y1=sin−1x−√x−x2
Required area is ∫10 (y2−y1) dx
=∫102√x−x2 dx
=2∫10 √(12)2−(x−12)2 dx
=2⎡⎣(x−122) √(12)2−(x−12)2+⎛⎝(12)22⎞⎠sin−1(x−1212)⎤⎦10
=π4