The area bounded by the curve y=x2+4x+5, the axes of co-ordinates and the minimum ordinate is
Given y=x2+4x+5
differentiating the equation
⇒dydx=2x+4∵dydx=0⇒2x+4=0⇒x=-2
Required area =∫-20ydx
Required area =∫-20(x2+4x+5)dx
=x33+2x2+5x-20=0+0+0--83+8-10=0--8+24-303=--143=143sq.units
Hence, the area is 143sq.units