The area bounded by the curves y=logex and y=(logex)2 is
A
3−e
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
e−3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12(3−e)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12(e−3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A3−e y=(logex)−−−−(1)y=(logex)2−−−−−(2)Forthepointofintersection(logex)2=(logex)(logex)2−(logex)=0(logex)[(logex)−1](logex)=0and(logex)=1x=1andx=eareabounded=∣∣∫e1{(logex)2−(logex)}dx∣∣considerI=∫{(logex)2−(logex)}dxlogex=tx=etdx=et.dtNow,I=∫et{t2−t}dt=et{t2−t}−{(2t−1)et−2et}[byintergrationbyparts]=et[t2−t−2t+1+2]=et[t2−3t+3]=x[log(x)2−3log(x)+3]Now,∣∣∫e1{(logex)2−(logex)}dx∣∣=∣∣[x{loh(x)2}−3log(x)+3]e1∣∣=|e(1−3+3)−1(0−0+3)|=|e−3|=3−e