The correct option is A 13
y=√1−|x|.
And
y=±(1−|x|).
Considering y=1−x ...(first quadrant).
Then
√1−x=1−x
Or
x=0,x=1.
Hence the required area will be
∫0−1√1−x−(1−x.)dx−∫10√1−x−(1−x).dx
Now the graph √1−x−(1−x) is symmetric to y axis.
Hence
I=∫0−1√1−x−(1−x.)dx−∫10√1−x−(1−x).dx
=2∫10√1−x−(1−x).dx
=2∫10√1−x+x−1.dx
=2[x22−x−2(1−x)323]10
=2[12−1−(−23)]
=2[23−12]
=13 sq units.