1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration as Antiderivative
The area encl...
Question
The area enclosed between the curves
y
=
log
e
(
x
+
e
)
,
x
=
log
e
(
1
y
)
and the
x
−
a
x
i
s
is
A
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
2
y
=
log
e
(
x
+
e
)
x
=
log
e
[
1
/
y
]
x
=
log
e
1
−
log
e
y
x
=
−
log
e
y
log
e
y
=
−
x
y
=
e
−
x
y
=
log
e
(
x
+
e
)
0
=
log
e
(
x
+
c
)
e
0
=
x
+
e
1
=
2
+
e
x
=
1
−
c
Area
→
∫
0
1
−
e
log
e
(
x
+
e
)
d
x
+
∫
∞
0
e
−
x
d
x
⇒
x
log
e
(
x
+
e
)
−
∫
1
(
x
+
e
)
x
d
x
+
(
−
e
−
x
]
∞
0
⇒
x
⋅
log
e
(
x
+
e
)
−
∫
(
x
+
e
−
e
x
+
e
)
d
x
−
[
e
−
∞
−
e
−
0
]
⇒
x
log
e
(
x
+
e
)
−
∫
(
1
−
e
x
+
e
)
d
x
−
[
1
∞
−
1
1
]
⇒
x
log
e
(
x
+
e
)
−
x
+
elog
1
(
x
+
e
)
−
[
0
−
1
]
⇒
[
x
+
e
)
log
e
(
x
+
e
)
−
x
]
0
1
−
e
+
1
⇒
[
e
log
e
(
e
)
−
0
]
−
[
(
1
−
e
/
+
e
/
)
log
e
(
1
−
e
/
+
e
/
)
−
(
1
−
e
)
]
+
1
⇒
e
+
1
−
e
+
1
⇒
2
s
q
⋅
u
n
i
t
Answer
Correct option is (A).
Suggest Corrections
0
Similar questions
Q.
Find the area enclosed between the curves
y
=
log
e
(
x
+
e
)
,
x
=
log
e
(
1
/
y
)
& the x-axis
Q.
The area enclosed between the curves
y
=
l
o
g
(
x
+
e
)
;
x
=
l
o
g
e
(
1
y
)
and x-axis is
Q.
The area enclosed between the curves
y
=
log
e
(
x
+
e
)
,
x
=
log
e
(
1
y
)
and the
x
-axis is
Q.
The area enclosed between the curves y = log
e
(x + e), x = log
e
1
y
and the x-axis is
(a) 2
(b) 1
(c) 4
(d) none of these