The correct option is
D 2π2π2+2π−8y=√4−x2… (given) ⋯(i)
⇒y2−4x2
⇒x2+y2=4
y≥√2sin(πx2√2) (given) ... (ii)
To find the period,
=2π/π/×2√2
=4√2⇒ period.
=4√22=2√2
=2×1.732
[3.4]
To find the intersection point using (i) and (ii)
x=√2
Area of circle =πr2=π×y=4π
Area of circle =π=A1.. (iii)
from (-2,0) to (0,0)
A2=∫√20√4−x2−√2sin(π2√2x)dx
⇒∫√20√4−x2dx−√2∫√20sin[πx2√2]dx
[∴√a2−x2dx=x2√a2−x2+a22sin−1xa]
=[x2√4−x2+42sin−1x2]√20−√2(π2√2)[−cos(πx2√2)⎤⎥
⎥
⎥
⎥
⎥
⎥⎦√20
=[22π√2+42sin−1[1√2]]+2×2π∣∣
∣∣cos(πx2√2)∣∣
∣∣0
=[1+42sin−1[1√2]]+4π[cos(π2√2×√2)−cos0]
⇒[1+π/2−4/π]
⇒2π+π2−82π.. (iv)
Using equation (iii) and (iv).
A1A2=π×2π2π+π2−8=2π22π+π2−8 Answer (D)