The area inside the parabola 5x2–y=0 but outside the parabola 2x2–y+9=0, is
12√3 sq. units
6√3 sq. units
8√3 sq. units
4√3 sq. units
Given 5x2−y=0 2x2–y+9=0 Eliminating y, we get 5x2−(2x2+9)=0⇒x=−√3,√3
∴ required area =2∫√30((2x2+9)−5x2)dx=2∫√30(9−3x2)dx =12√3 sq. units
The area enclosed by 2|x| + 3|y| ≤ 6 is