The correct option is C 3a22
Changing to polar form (by putting x=rcosθ,y=rsinθ)
⇒(rcosθ)3+(rcosθ)3=3arcosθrsinθ
⇒r3cos3θ+r3cos3θ=3ar2cosθsinθ
⇒r3(cos3θ+sin3θ)=3ar2cosθsinθ
⇒r=3acosθsinθ(cos3θ+sin3θ)
Put r=0,sinθcosθ=0
∴θ=0,π2, which are the limits of integration for its loop.
∴ Area of the loop=12∫π20r2dθ
=12∫π209a2sinθcosθ(cos3θ+sin3θ)dθ
Divide numerator and denominator by cos6θ we get
=9a22∫π20tan2θsec2θ(1+tan3θ)2dθ
Put 1+tan3θ=t and 3tan2θsec2θdθ=dt we get
=3a22∫∞1dtt2
=3a22∣∣∣t−1−1∣∣∣∞1
=3a22(−0+1)
=3a22