The area of a quadrilateral (-4, -2), (-3, -5), (3, -2) and (2, 3)is
Let the points be A(4,2),B(3,5),C(3,2) and D(2,3)
The quadrilateral ABCD can be divided into triangles ABC and ACD and hence the
area of the quadrilateral is the sum of the areas of the two triangles.
Area of a triangle with vertices (x1,y1) ; (x2,y2) and (x3,y3) is ∣∣∣x1(y2−y3)+x2(y3−y1)+x3(y1−y2)2∣∣∣
Hence, substituting the points (x1,y1)=(−4,−2) ; (x2,y2)=(−3,−5) and (x3,y3)=(3,−2) in the area formula, we get
Area of triangle ABC =∣∣∣(−4)(−5+2)+(−3)(−2+2)+3(−2+5)2∣∣∣=∣∣∣12+0+92∣∣∣=212=10.5squnits
And, substituting the points (x1,y1)=(−4,−2) ; (x2,y2)=(3,−2) and (x3,y3)=(2,3) in the area formula, we get
Area of triangle ACD =∣∣∣−4(−2−3)+(3)(3+2)+2(−2+22∣∣∣=∣∣∣20+15+02∣∣∣=352=17.5squnits
Hence, Area of quadrilateral =10.5+17.5=28squnits