1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The area of a rhombus is 480 cm2, and one of its diagonals measures 48 cm. Find (i) the length of the other diagonal, (ii) the length of each of its sides, and (iii) its perimeter.

Open in App
Solution

It is given that, Area of rhombus = 480 cm2. One of the diagonal = 48 cm. (i) Area of the rhombus = $\frac{1}{2}×{d}_{1}×{d}_{2}$ $⇒480=\frac{1}{2}×48×{d}_{2}\phantom{\rule{0ex}{0ex}}⇒480=24×{d}_{2}\phantom{\rule{0ex}{0ex}}⇒{d}_{2}=\frac{480}{24}\phantom{\rule{0ex}{0ex}}⇒{d}_{2}=20\mathrm{cm}$ Hence, the length of the other diagonal is 20 cm. (ii) We know that the diagonals of the rhombus bisect each other at right angles. In right angled ∆ABO, AB2 = AO2 + OB2 (Pythagoras Theorem) ⇒ AB2 = 242 + 102 ⇒ AB2 = 576 + 100 ⇒ AB2 = 676 ⇒ AB = 26 cm Hence, the length of each of the sides of the rhombus is 26 cm. (iii) Perimeter of the rhombus = 4 × side = 4 × 26 = 104 cm Hence, the perimeter of the rhombus is 104 cm.

Suggest Corrections
27
Join BYJU'S Learning Program
Related Videos
Crystallization
MATHEMATICS
Watch in App
Join BYJU'S Learning Program